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Abstract

We suggest a new approach to database Updates, in which a database is treated as a ectllection of
theories. Wc investigate two isstues: simultaneotis multiple update operations, and equivalenice.(of uatabases
under update operations.

.1. Introduction

One of the innin piroblems in database theory is the problemi of view u[pdatinig. i.e., how to translate an
update on a user view into an update of the database ([BS), [CA], [DII], 1J.11. [Ku I, [01). The problem
is that inl general there is no uniue database update corresponding to the view update. Atiot hcr problem
is that of updating a database that mnust satisfy certain integrity constraints ([NY]. [TI). The difficulty here
is that the database after the update may rio loniger satisfy the constraints, in which case we umay have to
mtodify other thing-i in the database. to ensure that the integrity constraints -still hold. As in the case of view

- updates., there is not n'ce'ssarily a unique way to modify the database so that thc constraints still hold.

Fagin et ali. [FUVI suggest that the appropriate framework for studying the seinantics of updates is to
tre'at the database as a consistent set of sentences inl first-order logic, i.e.. a theory. A theory is a description
of the world, bitt is not necessarily a complete description, every model of the theory is a possible state of
the world. Thus the database call be viewed as .;uall xact description of our knowvledge about thc world. This
framework was propounded in other papers (e.g., (Kol, [NG1. (RI1).

W~hen one tries to updamte it theory by iniserting or deleting some sentencc, several new theories can
accomplish the update. Fagin et al. [FtTVI argue that we should try to minimize the change that is needed
to accomplish the update. ITutfortunately, even under this miinitnality constraint, there may he several
theories that accomplish the update. with no reasonable way to choose between thmeim. One approach to this,
suggestedl inl [FUVI. is to define the result of the update to be Ithe dijuntion of all the possible theories that
accomplish the update with minimual chauige. Two difficulties with this approach are that it requlires uts to
have sentences of a rather complicated syntax, e.g., dlis;junctions' of tuplcs int a relationial database, and that
the numiber of sviatces in the database may grow douibly exponentially with c'aclI update.

The fac.t that several thiecries4 can accomplish a giveun updlate ttotivates an aliternative approach: viewing
the database as at collection of theories rather thtan a single theory. We call at collection of thevories at flock.
The advantage of this approach is that it is easier to (leal withI the multtiplicity of flocks than with the
multiplicity of theories. With the new approach, the semtencs we get are of no greater comple)IXity thrui
those that were inl the database or those that were inserted. and the number of sentences does not grow ais

* fast as before.

In this paper, after presenting the two approaches to pchats, database is teories vs. lhatabases as
flocks, we investigate two basic issues. First we tutdy hatch aeorations, in which miay l4vitences, rather
titan at single sentence, are inserted or deleted siniiiltanic'isly. Wev hti- ob:;rvo that tvo thco rics or flocks
that are logically equivalent maty not be eqUivalent after an update is pcrfurtitcd. 'We give necessary aud
sufficient conditions for equivalenice forever, i.e., equivalence that is preserved littler updates.
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2. Updates of Theories.

Our basic units of information are sentences, i.e. fornuilas without free variables. We do not allow
inconsistent sentenct. nad we do not allow the deletion of valid sentt'.A. A theory isA a consistent set of
sentences. We shall use the letters S and T to denote theories, anid the letters a and r to denote scutetces.

We ;tart by describing the framework developed in [F(JV].

Definition 1:

1. A theory T accomplishes the deletion of a from S if T t a.

2. A theory T accomplishes the insertion of ,a into S if a E T.

Definition 2: Let T 1 . T2 and T be theories.

1. Tt ha.s fewer insertions than Tj with respect to T if T, - T C T2 - T. 3

2. Tj has fewer dections than T- with respect to T if T - T t C T - T 2.

3. Tt has fewer chmiges than T2, with respect to T, if T , has fewer deletions than .T2, or T, and T2 have
the same deletions (T - T, = T - T2) and T, hs fewer intsertions than T2.

Definition 3: A theory T accomplishes an update u of S inininially if T accomplishes u and there is no
theory T' that accomplishes u and has fewer changes than 2 with respect to S.

Theorem 1: ([FUVI) Let S and T be theories and let a be a sentene,. Then

1. S accomplishes the deletion of a from T minimally iff S is a maximal subset of T that is consistent
with -a.

2. S U {} accomplishes the insertion of a into T minimally iff S is a maximal subset of T that is
consistent with a. I

There could be maty theories that accomplish aU tlpdate nIinimally. Suppose that T1, .... , T, are the
theories that accounpish anm update it of S minimally. It is argued in [FUVI that the rmsult of u should be a
theory T such that

NMod(T) = U mod(T),

t<i<n

where Mod(S) is the set of models of the theory S.

Definition 4: Let T L, ... T, , be theories. The disjunction of these theories is defined to be the theory

V T,={rV"'.VrjricETiIt i-<i}.
t<i~n

It is shown in [FUV] that

M( V T,) = U Mod(T,).
t~i<n L, i< n

Thus they suggest that if Tt, ... , are the theories thit accomplish am upd)late u minimtlly, then the re.ult
of u should be V 1<i< Ti.

'We use. to 4lcuote inclusion, and c to drmote proper incluvion.
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3. Flocks.

In this section. we shall describe zanother approach to updates, namely uing collections of theories. We
call these collections flocks. The intuitive idea is that since we hav, many possible theories that accomplish

an update miinmally, we reflect this a,-mbiguity by keeping all these theories.

Definition 5: A flock S is a set of theories. The rmiodels of S are

Mod(S) = U Mod(S).
ScS

To update a flock we have to update each theory in the flock. Formally:

Definition 6: Let S = {S,...,S,,} be a flock. A flock T = {T 1 ,... ,T,} accomplishes an update u of S
niinimally if Ti accomplishes the update of Si miinially, for I < i < n.

Again, there could be many 1locks that accomplish an update minimally. Suppose that TI, ... , Tn are
the flocks that accomplish an updatl u of S. mininmally. As in [FUV], we contend that the result of u should

be a flock T such that

Mod(T) = U Mod(Ti).
j<i<n

It is easy to show that the flock U,< i<,, T, has this property. This motivates the following definition:

Definition 7: Let S be a flock, and let St, ... S,n be the flocks that accomplish an update u of S minimally.
Then the result of it is the flock U1 i<n Si.

Lemma 2: Let S = (Sl .... S,} be a flock. For each theory Si, let Se', ... , Sj' be the theories that
accomplish the update u of S mniimally. Then tihe result of applying u to S is the flock

S' 1< i < n, 1< k <y}.

Proof: Let S' be tile result of the update. If S E S' then, by Definition 7, S E Sj, for some Sj that
accomplishes the uplate minimally. But then, by Definition 6, S accomplishes the update of some Si E S
minimally, i.e., S is one of the theories S1t ... S 8'.

Now let S = S4 for some k, I < k < ji. Then S accomplishes the update u of Sj minimally. For each j,
I < j n a, j 7- i, let Si be any theory that accomplishes the apdate u of Sj miiniunally. Then. hy Definition 6,
the flock {St,...,Si-,S,S J '....,S } acconLpLishes the update it of S minintally and so, hy Definition 7,
each theory in this flock is in S'. lit particular, S E S'. I

It other words, to update a flock, consider &'a,'h theory in the flock in turn. Take all theories that
accomplish tihe update mitfinally and put theun in the new flock.

Note that if a flock is a singleton, i.e., contains exactly one Itheory, its models as it theory and is a flock
are the same. Also, the flock that we get after applying i update to suc:h a flock has the same models as
the theory we get by applying the update to tihe single member of that flock, a- the following lemna shows.

Lemma 3: Let S {S} be a singleton flock, and u ani update. If S' is the result of applying tihe update is

Jo the theory S. and S' is the reslt of applying u to the flock S. then S' and S' have the sane models.

Proof: By Lemma 2, the result of applying u to S is the flock S' = {Sj 1 1 < i < j}. where S, ..... Sj
are the theories that accomplish the update u of S minimally. Similarly, the result of applying u to S is the

3



theory S' = Vl<i<.j Si. By Definition 5 and the comments at the end of Section 2, S' and S' have the -ame
modls.

Eveni though the result of an update has the same iodels ruder bot h approaches. under future uip|dates
their results may dliffer, a.s the following example shows.

Example 1: If we start with the flock {{A. D}}, an1d1 delete A A B from it ising the flocks appproach, we
take all the maxima stubtheories of (A, B} that do not imply A A B. nanicly {A) and {B). That is, the
resulting flock is {{Al. (/B}). If we now delete A and then delete B, we end iu) with the flock containing
only the empty theory, i.e., anything is t model of the result. On the other hand, if wc start with the theory
(A, B}, and delete A A B, we get the theory {A V D}. Thi has the same models ;I-; the flock {{Al, {B}}.
However if we now delete A and then delete D, we still have the theory (A V B1, which does not have the
same models as the empty theory. 3

IIl practice, singleton flocks are the most likely to be used as the starting state of the database (in fact,
the starting state will probably be 10)). It would be interesting to characterize the flocks that are obtained
from singleton flocks by a seqe('nce of update operations. Another interesting question is the comparative
merit of the two approaches: theo~rics vs. flocks. We know that these approaches yield different results for
the same updates. Which one of them is more correct?

4,
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4. Batch Operations.

Batch operations consist of dhleting or insertitig several enitcinccs simultaneously.

Definition 8: Let S be a theory and let E he a set of sentences. We say that S' accomplishes th, deletion

of E from S if S' V a for each aY E E. We say that S' accoi plishes the insertion of E into S if E C S'.
We say that S' occortplishes at update u of S (inimially if S' accomplishes t and there is no theory that

accomplishes u with fewer changes.

The above definition is tion-constructive in the sense that it does not explicitly say how to find those the-

ories that accomplish an update iiiinally. The following theorem gives a constructive equivalent condition,
which generalizes Theorem 2.

Theorem 4: Let S and T be theories and E a set of -entences. Then

1. S accomplishes the dektion of E fromi T mininmally ilf S is a maximal subset of T snch that S U (--aI}
is cmnsistent for all a in E.

2. SUE accompnlishes the ii|sertion of E into T aninimnally ifr S is a maximal subset of T that is consistent
with E.

Proof:

1. If S is a muaximal subset of T that is consistent with -e for every ay E E, then clearly.,' accomplishes
the deletion of E frout. S. Assume that S does not accomplish the deletion inininally, i.e., there is

a theory S' that accomplishes the deletion with fewer chanige than S with respect to T. If S' has
fewer deletions than S, then T - S' C T - S. But thei S' n' T is also consistent with -a, for all a in

E, contrary to the ntaxitrality of S. Therefore S' must have tile same deletions as S with respect to
T. Clearly S' cannot have fewer insertions that S, since S has no such insertions at all.

If S accomplishes the deletion minimally, it must be consistent with -a for every a E E. It is also
clear liat S C T since if it contained sentences not in T we could remove them and get a theory that
accomplished the update with the same deletions and with fewer insewrtions. If S is nlot a maximal
subset of T that is consistent with all the -'s, theni there is a theory that aecoinplihcs the Ipldate
with fewer deletions than S.

2. Let S be a inaxinal subset of T that is consistent with E. S U E clearly accomplishes the inisertion
of E. Suppose that S' accomplishes ite update with fewer deletions. and let S" = S' n T. Then
T - S" = T - S' C T - S, and therefore 5 C S" C T and S" is consi~tent with E- coitt radicting the

niaxiinality of S. Clearly, no theory can accomplish the insertion with the sanie deletions and with
fewer insertions than S U E, since the only insertions are E.

If S U E accomplishes the insertion of E niinitally, we itnitst have S C T witd S con.i.tenit with E.
If S is not a maximal subset of T that was coisistent with 5E, then we cait [Hnd S' cons.,istent with

E that sati-4fies S C S' C T. But tln S' U E %u:cutiplishes the itsertion with fe~wer deletions-

contradiction. I

Using Definition 8, we can define the result of batch updates both fior theories anud for flocks. For
theories, we define the result of the update to be the disjunction of all the theoric,% that accomplish tile update
minimally, as in Definition 4. For flocks, we nise Definitions G and 7.' Namely, to update a flock consider each
theory in the flock in turn, take all theories that accounplash the update of this theory niilLimnally, and put
themi into the new flock. In the sequel, we r.erv, the tern: update (respectively, deletion. inmrtion) for the
case where a single sentence is deleted or inserted, to distinguish it froin batch update (respectively, batch

deletion, batch insertion), where a Aet of sentences is deleted or inserted.

5



The following example shows that the batch deletion of E does not always give the same result as

deleting the sentences in E one by one.

Example 2: Deleting {A, BI from the theory {A. B, A B} results in the theory {A =_ }. If, on the
other hind, we delete first A, we get the theory I B V (A B))}, which reimains unchanged after deleting B.

Deleting first B and then A givcs us the theory {A V (A B)}.

Deleting (A. B} from the flock {{A, 0, A M B}} resiults in the flock ({A = B}}. If. on the other hand,
we delete first A we get the flock {{ ), {A - B)), and if we then delete D wv end up with the flock
{, JA -_- D)). This is different from the Hock {{A - 0}}, since the union of the modrls of the first flock
consists of all possible structures, whereas the models of ((A =_ }} axe only those Iodels in which A and

B are equivilent. f

Similarly, the insertion of E does not give the same result as inserting the sentences in E one by one.

The following theoren shows, however, that for flocks, batch insertions can be simulated by single updates.

Theorem 5: Let E = (ey,...,,) be a coni4istent set of sentences and let S be a flock. Then the result of
inserting E into S is the same as first deleting -(aj A A (7,) and then inserting the ci's one by one.

Proof: A theory S is consistent with I ifl S.v -(ar A. .Aa,,). Let T be the result of deleting -'(a, A.-." Aa,)

from S. We claint that S' = {T U E I T E T} is the result of inserting E into S.

First. let T be a theory in T. It accompllshes the deletion of -(a, A . A a,,) from some S E S minimally.
We clain that TU E accomplishes the insertion of E into S iinimally. It is clear that TU Z accompli.les the

insertion of E. If T' accomplishes the insertion with fewer deletions that T'U Z, then T' also accomplishes the
deletion of -(&1 A ... A a,,) from S with fewer deletions than T with respect to S, a contradiction. Clearly
no theory can accomplish the insertion of E into S with fewer insertions that T U E with respect to S, since
the only insertions here axe the sentences of E. This shows that each theory in S' is in the re.sult of inserting
E. into S.

Now let T be a theory in the result of inserting E into S. i.e.. T ,cconiplishes the insertion of E into some
S E S ininnally. Let T' = T - (E - 8). Then T' is cons~istent with E and s o T' accou~tpli.hes the deletion of

(et A ... A,) from S. I" sonic theory S, accollplsles the del'tion with fewer dehtions than T' with respect
to S, then S, LJ E accottpli.Ahes the insertion of E. with fiewer deletions thui T. a coutr;adiction. Therefore,

T' accouiplishes the delihtion of -(at A ... A a,) from S minimally, i.e., T' E T, and therefore T - T' U Z is

in S'.

Remark@:

1. The theorem does not hold for theories. For example. let S be the theory (A, B}, and E the set
((A A B) A C}. Then the result of inserting E into S is the theory

{A V ((A -A 13) A C).D v ((A A B) A C),A V ). (A AB ),\ C).

On the other laud. the result of deleting (A -- B) V -C from S is the therory {A V B), and if we

then just insert (A A B) A C, we get the theory (A V B, (A ; B) A C).

2. There are batch deletions from flocks that cantnot be siualated by any seqenrce of single updates.
For example, if we delete (A, B) from the lock ((A V B. A V -B.-A V 11, we get the flock

((A V B), {A V -,B, -A V B)). It is shown in [Ku] that the latter Hock cannot be obtaine-l from
- any singleton flock by single updates.

6



5. Equivalence Forever.

5.1. Definitions.

Two theories or flocks are logically equivalent if they have the same rnod(ls. Neverlheless. this does

not guarantee that they will continue to have the same models after any sequence of updates, as the next

examiple shows.

Example 3: The two theories {fB} and {B, A V B} are logically equivalent. However, if we delete B from

both of them we get the nonequivalent theories 0 and {,* V B}.

The two flocks {{B}} and {{B, .4 V B}} are logically equivalent. After deleting B from both of them we get
the nonequivalent flocks {0} and {{A V B}}. I

We say that two theories or flocks are equivalent forever if after applying any seqtence of updates

we always get two theories or flocks that have the same models. In the rest of this section we supply
characterizations for equivalence forever.

We use the following defiuition.

Definition 0: We say that a theory S covers a theory T iff every sentence r in T is logically equivalent to
a conjunction eOj A ... A a',, of sentences in S. (An empty conjunction is by convention vald.)

5.2. Equivalence Forever for Theories.

Theorem 6: Let S and T be finite theories. The following are equivalent.

1. S and T are equivalent forever under updates.

2. S and T are equivalent forever tunder batch updates.

3. S auud T are equivalent forever waider deletions.

4. S and T are equivaletit forever under batch deletions.

5. Each sulset of S is logically equivalent to a subset of T, uld vice-versa.

6. S covers T, and vice-versa.

Proof: (2) (1), (2) * (4), (4) * (3), (5) =* (6) and (1) -t (3) are obvious. We shall show (3) => (6),
(6) ( ,) ,,i (5) (2).

(3) * (6) We shall prove the following statement, which we call statement (*), inductively on k:

(*) Let Tt and T2 be finite theories that are etquivalent forever under elctims. If there is a
structure M that obeys r E T, atd thit also obeys exactly k ,etltLceA in T2, tler r is equivalent

to a conjunction of sentences in T 2 .

Statement (') implies (3) * (6). For, let S = TL and T = T2, uid let r be an arbitrary niemuber
of S. Let il be a structure h'ich obeys r. (Thure is such a structure since we deal only with
consistent sentences.) Since T is finite. there is some k (possibly k = 0) such that Ml obeys exactly
k sentence in T. Then statement () tells its that r is equivalent to a conjunction of sctences in
T, as desired.

If T, and T 2 are finite theories and if M is a structure, it is convvenient for us to define a(M, Tt, T'2)

to be the sentence
V { E I E TL U T 2 and M violates a}.

7I-1



It is easy to see that there is a single maximal theory which results from deleting this sentence
from Ti. nnuie(y, the set of Al scnteu es in T which are trit. in Af. Of course, the same is true
about T'2. We are now re;y to prove statvineit (4), by invltuction on k.

k = 0: In this case, M obeys no sentence in '2. Let us denote by T, (respectively, T2) the result
of deleting a(AI. T1 , T2,) from TL (respectively, T 2 ). Sitce Ml obeys uo s,,utence in T 2 , it fllows

that T,' is the empty theory, which every :4tructure obeys. Since T, and T2 are equivalenlt (by
equivalence forever of T, and T 2 under deletions), it follows that T1 consists of valid sratences.

But r belongs to Tl, siTLCC M obeys r. It follows that r is valid, and is therefore equivalent to a
conjunction of :entences in T2.

liductive step: Assume that the inductive hypothesis (*) holds, with k' substituted for k. for every
k' < k, and for every choice of TL and T2. Let Tt anid TI be finite theories that are equivalent
forever under deletions, and let M be a structure which obeys r E T, and which also obeys exactly
k sentences in T 2. We must show that r is equivalent, to a conjunction of sentences in T2 .

Let us denote by T" (respectively, T2) the result of delting a(M. TLT:) from T, (respectively,
T2 ). Then T, is a subset of T, which contains r, and 7'" is a subset of T2 which contains exactly
k sentences (namely, those sentences in T2 which are true in Af). By eIiivalence forever of TL

and T 2 tinder deletions, we know that T1 uid T2 are also equivalent forever under deletions. In

particular, Tt wid T2 are equivalent, and so T2 implies r. If also r were to imply T2 (that is,
if r were to imply every member of T2). then we would be done, since r would be equivalent to
the subset T2 of 7'2. So we can Lsuzzme that r does not imply T. Therefore, there is a structure

M' which obeys r but not T. Let k' be the number of niemimbers of T. which M' obeys. Then
0 < k' < k, since Tj contains k scitences, not al of whid M' obeys. By inductive hypothesis (*),
where T,, T2, wid k' play the roles of Tt, T2, and k respectively, it follows that r is equivalent to

a conjunction of members of T2, and hence of T2 .

(6) = (5) Let S' be a subset of S. For each or E S', let T, be a subset of T such that a is equivalent to the
conjunction of members of "0 . Let T' be the union of aU sets T, where or E 8 '. We now show that

S' is equivalent to T'. If r E T', find a E S' such that r - T,,. Then ey inplies r, so S' implies r.
Hence, S' implies T'. Conversely, assume that or E S' . "Then T. implies a, and so T' implies a'.

Hence, T' implies S'.

(5) - (2) Assume that (5) holds. It suffices to show that if S(M) (respectively. T()) is the result of applying

a batch update u to S (respectively, T), then every subset of sP) is equivalut to a subset of TM1 )

9 and vice versa.

Let the update u be the deletion of E (we shall remark at the end how to modify the proof to deal
with the case where u is an isertion.) Let S' be a miaximal subset of .5 that is consistent with
-a, for every a C- E. By as.snuption, there is a subset of T that is equivalent to ,. Let V be a

maximal such subset of T. We now show that T is a na'xinid subset of "' rhat is consistent with

-a, for every a E E. Clearly T is cotnistent with evry -ar. silice T' is eqivalitt to S', *uid S t

is consistent with every -/Y. If Tt is not inaximal, then find T' C T consistntt with every --a such

that T C T'. By definition of T, we know that T is not cqivalnt to T'. By hypothesis, there is

a subset of S that is equivalent to T'; let S' be a maximnid such subset. Since S' - V C T' - S',

it follows that S' implies S,, and so S' U S' is equivahcit to S'. By rnaximality of S', it follows

that S1 C S'. But St -A S', since S t - T " -A T'- S'. Hence, S' C S'. Since T' is consistent
with -ai, for every a E E, and since T' , it follows that 5' is consistent with every -(7. This

contradicts matointality of S'.

Let us call each maximal subset of S (respectively, T) that is consistent with every -ai an S-

candidaste (respectively, a T-candidate). We have shown that for each S-candidate S' there is a
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T-candidate Tt such that St V. Similarly, for each T-candidate T there is an S-eandidate St

su'i that S' =_ T. Furthermore, it is easy to show that this corr. poiidence is bijcctive. That is,
if St, , S,, are all of the distinct S-candidates, then there is it li.ting TL, T,, of all of the
distinct T-cmadidates such that Si T,, for I < i < n.

The result S() of the update on S is the theory V{Si I I < i < n}. and analogously for TOY. We
SiAl show T) covers S (L). As ini the proof that (4) = (3), it tlw follows that every subset of
S(0) is equivalent to a subset. of T1( ) , as desired.

Let a-be a member of SO ). We know that a is of the form a V V On, where ai E Si, for
I < i < n. By asa:iption, there is a subs et T/ of T which is equtivalent to cti. Since ai E Si - Ti,
it follows that Tj implies ai, and hence T implies T'. So by maxitnality of T i, we know that
"r'g T,. Let Q be the set {ri V ... V r, I ri E T for I < i < n}. Then Q T(t). Let r be the

conjunction of members of Q. The proof is complete if we show that a is equivalent to r. Let r'
be the conjunction of mneibers of T ,, f.r I < i !5n. , d let -y be the disjunction r' V ... V ' ..
Clearly r' is equivalent to cv,, since both are equivalent to T2' (I < i <_ n). Hence, *y is equivalent

LP to n. But r is the conjunctive nrnial form of -7, ;ud consequently r is equivalent to a.

We close by remarking how the proof should be modified to deal with insertions rather than
deletions. Assume that the updaLe a is the hisertion of E. Let us call each maximal subset of S
(respectively, T) that is consistent with E an S-candidate (respectively, a T-candidate). Just as
before, it follows that if S1 , ... , S,, are ,all of the distinct S-candidates, then there is a listing TI,
.... T, of all of the distinct T-caudidates such that Si = Ti, for I < i < n. The result S(') of the
update on S is the theory V{S U E I I < i < n}, and analogously for T(). Let aY be a member
of S(). We know that a is of the form a, V -.. V a ,, where aj E Si U E, for I < i < n. If no
ai is in E, then the proof proceeds as before. Assutme now that some ai is in E. For simplicity
in description, assume that at i in E, but ati E S for 2 < i < n (otherwise there is ani obvious
modification in the proof). As before, find a subset T' of T which is equivalent to ai, for i > 2.
Let Q, be the set {at V r2 V *-V r,, I ri c 2" for 2 < i < n}. Then Q C 7'(T ), and, as before, ct is
equivalent to the conjunction of members of Q. I

5.3. Equivalence Forever of Flocks.

We do not have, at present, a simple necessary mid sulficivnt condition for equivalence lorvver of general
flocks. However, for singleton flocks, i.e., flocks that contain only one thVOry, we can prove at analogue to
Theorem 6.

Theorem 7: Let S and T be finite theories, and let S = {S} and T = {T) be singleton flocks. The
following are equivalent.

I. S anti T are equivalent forever under updates.

2. S and T re equivalent forever tnder batch updates.

3. 8 and T are equivalent forever under deletions.

4. S aid T are equivalent forever under batch deletions.

5. Each subset of S is logically equivalent to a subset of T, ;ad vice-versa.

6. S covers T aad T covers S.

Proof: (2) =,> (1), (2) * (4), (4) :- (3), (5) => (6) imid (1) (3) are obvious, id (6) * (5) was proven in
Theorem 6. We now show (3) * (6) and (6) =. (2).

9



(3) > (6) Assume that S does not cover T. Then there is a sentence r ill T that is not logically equivalent to

any colijuliction of sentences of S. Let E be the set (of sn iences in S u T that are not iuplli4,,l by

r. Let R be I) the et of ImLyinal di.,jiiictiolls of seltnc'es ili E, i.e., thes et R of all di.,jiutictions

of sentexices in F such that if we add lay other ilkte ! ;', to tile diis tine t oin, the rW.'LIt is

implied by r. Formally, R 'ins.;ists of all selteflies of thne forznr (t V ... V ka, where each o'i is in E,

T t4C V ... V ak ,

and if a is any sentence in E distinct from all the ai's, then

T = 71 V ...V(k V O.

We now show that if we hlete the sentences in R from the flock S = {S}, one by one, in any
order, the resulting flock S' will be equal to (S - E}, and similarly deletisg R from T { (T} will
result in (T -- E}. We prove this for S, aid an analogous proof holds for T.

Since no sentence in E is implied by r, every a in E can be extended to a maximal disjunction
a V al . . V ok that is in the set R. After deleting this ,lisj~inction. we get a flock of theories,
none of which can contain aly of the sentences a, at, .. . , (7k. Therefore ad'ter deleting all of the
sentences in R fromn S we get a fock S' of theories, each of which must be a subset of S - E.

We now show by induction on the number of deletions that the result is a siniletol flock, conis ting
of one theory that is a superset of S - E. The basis for the induction is the iotitial flock S. We
now show that if we have a flock consisting of one theory that is a sunperset of S - E lnd a isubset

of S and we delete a entence in the set R from it, we get i singleton flock that also consists of

one theory that is a superset of S - E aid a subset of S.

Suppose that we have such a flock consisting of the theory S' and we delete fromt it a sentence

a1 V... V (71. of R. Let E - {aI,. .. a,} { 1 1 .... I ,,. Since (j V... V a . is TIuL-dinai, r implies

at V ... V (7 V CN fur I < i < r , and consequently -ai inplies a 1 V ... VokV-.r for I< i<m.

Suppose that {r, l,. , I, } implies a1 V ... V (7 , then r iu plies -. i V • V -0,1 V (71 V •. V ak-.

Bit then it follows that r impLits a V-..Vai -conitradictioni. But r implies S--E by definition uil

S' is a sulbset of S. so (S' - E) U (at t. ,, } dees nOt iltluhy ( v V a . 'Thus S' - (at,....at, }

is corsistent with -(a 1 - . V ak). It follows that the result Of deleting aV1 V V a from {' '} is

(S' - (-I- .. a}}. This completes the induction and shows that the rc..tilt of deleting R from

S = {S} is S' = S- E.

By the definition of E, we have r S - E. anid therefore r implies the conjunction of all the

sentences in S-E. Since r is not logicdly equivalent to any conjunction of a collection of sentences

in S, it follows that S - E 4 r. Therefore. there llust bet it model M of S - £ that is not a model

of r. Then M is a model of S'. However, silce r in ill T - V, M is not a model of T'. It follows

that S ai¢! T are not equivalent forever under deletions.

(6) => (2) We show by induction on the itumber of updates that we always have

(VS' E S')(3T' E T')(S' covers T' A T' cov rs S'), (I)

where S' and T' are the flocks we get from S and T by performing sonic updates. By our

assumption, Conidition I holds at the beginning, when both flocks are singletons. - 1
Assille that Comdition I holds after some insertinis anid delhtions. We have to show that it

continues to hold after deleting a set of sententces E. The argument for insertiont is similar and is
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left to the reader. We hall use S' and T' for the [locks before time deh'tion, S2 and T' for the
flocks. afterwards.

Let '2 be a theory in the flock S 2 . We first show that there is soniv theory in T that covers
S2. By the defjiition of deletion, .S2 jmoist he i nmxiiial sthi.-vt of some theory S' in the flock
S1 that does not imply any sentence in E. By the inductive hypothesOis, there is a theory T t in

the flock Ti such that S' covrs -V,. and T' covers S" . Let aj he any sentence in the theory S 2 .

Since H2 is a sus)et of S' and T covers S', there are sentences rt, ... , rim. n T' such that
(7i ril A • " " A Ti,.

Let A be the set of all these rij's, for all ai's in S2 . eV claim that A does not imply any sentence
in E. AssuTne otherwise, i.e., A a, for some a it E. Since each C'i in S 2 implies all tile
corresponding rij's in A, we have S2 - A, and therefore S2 V- a, a contradiction. Therefore
A does not inply any sentence in E and can he externded to i maximal subset of TL with this
property. Call tile truLxilal stubset T'. Since A covers S2, T 2 also covers 5 2 . We shall now show
that S2 covers T 2 , thus completing the proof.

Let r be any sentence in T 2 . We have to show that it is logically equivalent to a conjunction of
sentences in S2 . Since SL covers T' amid T 2 is a subset of T t , there aXe a1 ,... ,a in S' such that

r= A ... A ak. (2)

We know that T 2  S 2 , since T 2 covers S 2 . We also know that T 2  r aj, for each aj. If
some oai were not in S2, the fact that S 2 is a naximaal subset of S' not implying any sentence in
E would entail that S2 U {a} imll>|ieS somne 3evnt¢,nce Or G S. But then T 2  = a, a contraliction.

This shows that each a, is in 52, iuid therefore ,i 2 covers T2 .

Now let M be a model of some theory S' in the flock S'. By Condition 1, there is sonke theory
T' in the flock T', such that S' covers T'. This imuplie s that M is also a model of T'. Thus every
model of S' is also a model of T'. Simnilarly, every imiodel of T' is also a imodel of S'. I

Example 4: The flocks {{A. B, A A B}) and {{A, B}} are ,uliiValveIit forever. The flocks {{A, B, A V B}}
and {{ A, B}} ,re not equivalent forever. If we delete A and then B. we ,vt {{A V B)} fron tile first flock
uil {} fromo tit( second one. g

For arbitrary flocks we only have a sufficient condition for equivaleie forever.

Theorem 8: Let S and T be two flocks that satisfy the cotnditions

(VS E S)(3T c T)(S covers T A T rovers S) (3)

aild

(VT E T)(-S c S)(T covers S A S covers T) (4)

Then S and T are equivalent forever.

Proof: See the proof of (6) -* (2) in Theoremn 7. I

Remarks:

I. By Theorem 6 we call replace "S covers T" in this theorem by tihe conditiom for every subset of
S. there is a logically equivalent subset of T."

2. Tle above conditions are not necessary for equivalence forever. For example, it is -fown in [Kul

that the two flocks

S A,AB, A= B), {A, A-- B), {B,A = }}
11



and
T= {{A,A D},{3, A 1,,j

are equ1ivatlent forever even thotighL they do not satisfy ( n nditions 3 ud 4..
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